转载自【2019.01.09 AA探针台 阅读 52】
反激式拓扑
反激式转换器是最常用的 SMPS 电路(图 1)。
图 1:使用单个 MOSFET 开关和反激式变压器的反激式转换器功能示意图。
反激式拓扑的主要优势是它的简单性。在任意给定的功率水平下,该拓扑是元器件数最少的 SMPS 拓扑。电源可使用直流或交流电源供电。当配置为从交流线路(市电)工作时,线路通常采用全波整流。输入源 (Vi) 为直流。
该电路的核心是反激式变压器。与传统的变压器绕组不同,反激式变压器的初级和次级绕组不会同时承载电流。这是因为绕组相为反相,绕组上的圆点记号和次级侧的串联二极管指示了这一点。
使用反激式变压器带来了几个好处。首先,电源的初级侧和次级侧可以电气隔离。隔离减少了初级侧的瞬态耦合、消除了接地环路,并在电源的输出极性方面提供了更大的灵活性。
利用该变压器可以在电源中生成多个输出电压。变压器针对每个电压增加额外的绕组。调压仅基于单一输出,而次级输出通常在局部进行调压。
电路从开启开关(例如 MOSFET)开始工作(图 2)。
图 2:分别显示两种工作模式的原理波形的反激式电源工作情况。
当开关处于接通状态时,VDRAIN 近乎零伏,电流 IP 流经变压器的初级绕组。能量储存在变压器的磁化电感中。此电流随时间呈线性增长。次级侧的串联二极管被反向偏压,并且次级侧没有电流流动。储存在输出电容器的能量向输出供应电流。
当 MOSFET 开关被关断时,变压器中储存的能量通过二极管输出到输出电容器和输出负载。次级电流值开始时较高,之后以线性方式递降。如果次级电流在开关重新接通之前降至零,则电源被称为断续电流模式 (DCM) 电源。反之,如果次级电流没有降至零,则电源被称为连续电流模式 (CCM) 电源。由于电感器中储存的能量在每个开关周期都会完全释放,因此 DCM 电源可以使用较小的变压器。此外,该电源通常更稳定,产生的 EMI 也更低。
储存在变压器漏泄电感中的能量在开关关断时流入初级侧,并由输入箝位或“吸收”电路吸收,该电路的作用是保护半导体开关不会被高感应电压损坏。只有当开关在通断状态之间转换时才会耗散功率(图 3)。
图 3:显示 MOSFET 开关的电压和电流波形以及瞬时功率耗散的反激式电源测量。
图 3 中最上面的迹线是反激式电源中 MOSFET 开关的电压。彩色覆盖部分指示 MOSFET 的状态。蓝色覆盖部分指示器件处于导通状态,而红色区域则指示器件处于关断状态。中间的迹线是流经器件的电流。最下面的迹线显示瞬时功率,其计算方法为所施加电压与所产生电流的乘积。可以观察到,开关转换期间的功率耗散最明显。而迹线下面的读数自左至右依次显示:开启、导通、关闭和关断状态期间的功率损耗,以及所有区域的功率损耗总和。