品玩12月26日讯,据 Arxiv 页面显示,同济大学近日联手复旦大学研究团队,提出了一种名为“检索增强生成(RAG)”的方法,旨在解决大模型幻觉、知识更新缓慢和答案透明度不足等问题。
论文显示,RAG在回答问题之前,会从外部知识库中检索相关信息,以提高答案的准确性,减少模型的幻觉,尤其适用于知识密集型任务。通过引用来源,用户可以验证答案的准确性,增加对模型输出的信任。
同时,RAG也促进了知识的更新和特定领域知识的引入。
品玩12月26日讯,据 Arxiv 页面显示,同济大学近日联手复旦大学研究团队,提出了一种名为“检索增强生成(RAG)”的方法,旨在解决大模型幻觉、知识更新缓慢和答案透明度不足等问题。
论文显示,RAG在回答问题之前,会从外部知识库中检索相关信息,以提高答案的准确性,减少模型的幻觉,尤其适用于知识密集型任务。通过引用来源,用户可以验证答案的准确性,增加对模型输出的信任。
同时,RAG也促进了知识的更新和特定领域知识的引入。